Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.931
Filtrar
1.
J Mol Cell Cardiol ; 187: 101-117, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38331556

RESUMO

AIMS: The sympathetic nervous system regulates numerous critical aspects of mitochondrial function in the heart through activation of adrenergic receptors (ARs) on cardiomyocytes. Mounting evidence suggests that α1-ARs, particularly the α1A subtype, are cardioprotective and may mitigate the deleterious effects of chronic ß-AR activation by shared ligands. The mechanisms underlying these adaptive effects remain unclear. Here, we tested the hypothesis that α1A-ARs adaptively regulate cardiomyocyte oxidative metabolism in both the uninjured and infarcted heart. METHODS: We used high resolution respirometry, fatty acid oxidation (FAO) enzyme assays, substrate-specific electron transport chain (ETC) enzyme assays, transmission electron microscopy (TEM) and proteomics to characterize mitochondrial function comprehensively in the uninjured hearts of wild type and α1A-AR knockout mice and defined the effects of chronic ß-AR activation and myocardial infarction on selected mitochondrial functions. RESULTS: We found that isolated cardiac mitochondria from α1A-KO mice had deficits in fatty acid-dependent respiration, FAO, and ETC enzyme activity. TEM revealed abnormalities of mitochondrial morphology characteristic of these functional deficits. The selective α1A-AR agonist A61603 enhanced fatty-acid dependent respiration, fatty acid oxidation, and ETC enzyme activity in isolated cardiac mitochondria. The ß-AR agonist isoproterenol enhanced oxidative stress in vitro and this adverse effect was mitigated by A61603. A61603 enhanced ETC Complex I activity and protected contractile function following myocardial infarction. CONCLUSIONS: Collectively, these novel findings position α1A-ARs as critical regulators of cardiomyocyte metabolism in the basal state and suggest that metabolic mechanisms may underlie the protective effects of α1A-AR activation in the failing heart.


Assuntos
Contração Miocárdica , Infarto do Miocárdio , Animais , Camundongos , Ácidos Graxos/metabolismo , Camundongos Knockout , Mitocôndrias/metabolismo , Infarto do Miocárdio/metabolismo , Estresse Oxidativo , Receptores Adrenérgicos alfa 1/metabolismo
2.
Basic Clin Pharmacol Toxicol ; 134(5): 704-711, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38409579

RESUMO

Although α1-adrenoceptor (α1-AR) antagonists used to treat benign prostatic hyperplasia can cause ejaculation disorders, the aetiology of this adverse event is still controversial. Therefore, we investigated the effects of antagonists with different affinities for α1-AR subtypes on ejaculatory function and their mechanisms of action in normal rats. In the spontaneous seminal emission (SSE) test, systemically administered prazosin, terazosin, tamsulosin and naftopidil decreased the weight of ejaculated seminal material in a dose-dependent manner; the potency order was as follows: tamsulosin > terazosin > prazosin > naftopidil. The selective α1D-AR antagonist BMY7378 had no effect on SSE. Intrathecal tamsulosin and naftopidil did not inhibit SSE. Tamsulosin, the most potent, was ineffective as a single dose and significantly increased seminal vesicle fluid in rats treated for 2 weeks but did not significantly change retrograde ejaculation. These results indicated that the difference in inhibitory potency of the five α1-AR antagonists against SSE was due to the involvement of α1A-AR subtypes. Our results further suggested that α1-AR antagonist-induced ejaculatory dysfunction at the peripheral level was mainly due to the loss of seminal emission, although some retrograde ejaculation may also be involved.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 1 , 60701 , Naftalenos , Piperazinas , Masculino , Ratos , Animais , Tansulosina/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Sulfonamidas/farmacologia , Prazosina/farmacologia , Receptores Adrenérgicos alfa 1 , Antagonistas Adrenérgicos alfa/farmacologia
3.
Biochem Pharmacol ; 222: 116092, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408679

RESUMO

Clioquinol (5-chloro-7-iodo-8-hydroxyquinoline) is an antimicrobial agent whose actions as a zinc or copper ionophore and an iron chelator revived the interest in similar compounds for the treatment of fungal and bacterial infections, neurodegeneration and cancer. Recently, we reported zinc ionophores, including clioquinol, cause vasorelaxation in isolated arteries through mechanisms that involve sensory nerves, endothelium and vascular smooth muscle. Here, we report that clioquinol also uniquely acts as a competitive alpha-1 (α1) adrenoceptor antagonist. We employed ex vivo functional vascular contraction and pharmacological techniques in rat isolated mesenteric arteries, receptor binding assays using stabilized solubilized α1 receptor variants, or wild-type human α1-adrenoceptors transfected in COS-7 cells (African green monkey kidney fibroblast-like cells), and molecular dynamics homology modelling based on the recently published α1A adrenoceptor cryo-EM and α1B crystal structures. At higher concentrations, all ionophores including clioquinol cause a non-competitive antagonism of agonist-mediated contraction due to intracellular zinc delivery, as reported previously. However, at lower concentration ranges, clioquinol has an additional mechanism of competitively inhibiting α1-adrenoceptors that contributes to decreasing vascular contractility. Molecular dynamic simulation showed that clioquinol binds stably to the orthosteric binding site (Asp106) of the receptor, confirming the structural basis for competitive α1-adrenoceptor antagonism by clioquinol.


Assuntos
Clioquinol , Ratos , Humanos , Animais , Chlorocebus aethiops , Clioquinol/farmacologia , Oxiquinolina , Receptores Adrenérgicos alfa 1/metabolismo , Ionóforos , Zinco
4.
Neuropharmacology ; 247: 109861, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38331315

RESUMO

Sleep is an instinct behavior, and its significance and functions are still an enigma. It is expressed throughout one's life and its loss affects psycho-somatic and physiological processes. We had proposed that it might maintain a fundamental property of the neurons and the brain. In that context, it was shown that sleep, rapid eye movement sleep (REMS) in particular, by regulating noradrenaline (NA), maintains the brain excitability. It was also reported that sleep-loss affected memory, reaction time and decision-making ability among others. However, as there was lack of clarity on the cause-and-effect relationship as to how the sleep-loss could affect these basic behaviors, their association was questioned and it was difficult to propose a cure or at least ways and means to ameliorate the symptoms. Also, we wanted to conduct the studies in a simpler model system so that conducting future molecular studies might be easier. Hence, using zebrafish as a model we evaluated if sleep-loss affected the basic decision-making ability, a cognitive process and if the effect was induced by NA. Indeed, our findings confirmed that upon sleep-deprivation, the cognitive decision-making ability of the prey zebrafish was compromised to protect itself by running away from the reach of the exposed predator Tiger Oscar (TO) fish. Also, we observed that upon sleep-loss the axonal arborization of the prey zebrafish brain was reduced. Interestingly, the effects were prevented by prazosin (PRZ), an α1-adrenoceptor (AR) antagonist and when the zebrafish recovered from the lost sleep.


Assuntos
Norepinefrina , Peixe-Zebra , Animais , Norepinefrina/farmacologia , Privação do Sono , Sono , Neurônios , Receptores Adrenérgicos alfa 1/fisiologia
5.
ACS Chem Neurosci ; 15(3): 671-684, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38238043

RESUMO

α1A-, α1B-, and α1D-adrenoceptors (α1-ARs) are members of the adrenoceptor G protein-coupled receptor family that are activated by adrenaline (epinephrine) and noradrenaline. α1-ARs are clinically targeted using antagonists that have minimal subtype selectivity, such as prazosin and tamsulosin, to treat hypertension and benign prostatic hyperplasia, respectively. Abundant expression of α1-ARs in the heart and central nervous system (CNS) makes these receptors potential targets for the treatment of cardiovascular and CNS disorders, such as heart failure, epilepsy, and Alzheimer's disease. Our understanding of the precise physiological roles of α1-ARs, however, and their involvement in disease has been hindered by the lack of sufficiently subtype-selective tool compounds, especially for α1B-AR. Here, we report the discovery of 4-[(2-hydroxyethyl)amino]-6-methyl-2H-chromen-2-one (Cpd1), as an α1B-AR antagonist that has 10-15-fold selectivity over α1A-AR and α1D-AR. Through computational and site-directed mutagenesis studies, we have identified the binding site of Cpd1 in α1B-AR and propose the molecular basis of α1B-AR selectivity, where the nonconserved V19745.52 residue plays a major role, with contributions from L3146.55 within the α1B-AR pocket. By exploring the structure-activity relationships of Cpd1 at α1B-AR, we have also identified 3-[(cyclohexylamino)methyl]-6-methylquinolin-2(1H)-one (Cpd24), which has a stronger binding affinity than Cpd1, albeit with reduced selectivity for α1B-AR. Cpd1 and Cpd24 represent potential leads for α1B-AR-selective drug discovery and novel tool molecules to further study the physiology of α1-ARs.


Assuntos
Prazosina , Receptores Adrenérgicos alfa 1 , Receptores Adrenérgicos alfa 1/metabolismo , Tansulosina , Norepinefrina
6.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068933

RESUMO

In order to find new hypotensive drugs possessing higher activity and better selectivity, a new series of fifteen 5,5-dimethylhydantoin derivatives (1-15) was designed. Three-step syntheses, consisting of N-alkylations using standard procedures as well as microwaves, were carried out. Crystal structures were determined for compounds 7-9. All of the synthesized 5,5-dimethylhydantoins were tested for their affinity to α1-adrenergic receptors (α1-AR) using both in vitro and in silico methods. Most of them displayed higher affinity (Ki < 127.9 nM) to α1-adrenoceptor than urapidil in radioligand binding assay. Docking to two subtypes of adrenergic receptors, α1A and α1B, was conducted. Selected compounds were tested for their activity towards two α1-AR subtypes. All of them showed intrinsic antagonistic activity. Moreover, for two compounds (1 and 5), which possess o-methoxyphenylpiperazine fragments, strong activity (IC50 < 100 nM) was observed. Some representatives (3 and 5), which contain alkyl linker, proved selectivity towards α1A-AR, while two compounds with 2-hydroxypropyl linker (11 and 13) to α1B-AR. Finally, hypotensive activity was examined in rats. The most active compound (5) proved not only a lower effective dose than urapidil but also a stronger effect than prazosin.


Assuntos
Hipotensão , Prazosina , Ratos , Animais , Prazosina/farmacologia , Anti-Hipertensivos/farmacologia , Ensaio Radioligante , Receptores Adrenérgicos alfa 1/metabolismo , Hipotensão/tratamento farmacológico , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia
7.
Horm Metab Res ; 55(12): 876-884, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37820700

RESUMO

Circular RNAs (circRNAs) participate in the progression of human cancers and have been broadly elucidated. Here, we aimed to elucidate the roles and functional mechanisms of hsa_circ_0080608 (circ_0080608) in lung cancer. Quantitative real-time PCR (qPCR) was performed to assess the mRNA expression levels of circ_0080608, miR-661, and adrenoceptor alpha 1A (ADRA1A). Western blotting was performed to measure ADRA1A protein levels. CCK-8, colony formation, and Transwell assays were performed to determine the effect of circ_0080608 on cell proliferation and migration. Animal models were used to assess how circ_0080608 influences tumor progression in vivo. The binding relationships of miR-661's with circ_0080608 and ADRA1A was confirmed using dual-luciferase reporter and RIP assays. Circ_0080608 exhibited relatively low expression in lung cancer samples and cells. Lung cancer cells overexpressing circ_0080608 exhibited reduced migratory and proliferative abilities. Additionally, circ_0080608 binds to miR-661 and operates as a competing endogenous RNA (ceRNA) and shares a miR-661 binding site with the 3' UTR of ADRA1A. Furthermore, circ_0080608 inversely regulates miR-661 expression, consequently restraining the aggressive behavior of lung cancer cells. Lung cancer cells overexpressing ADRA1A also exhibit repressed migratory and proliferative abilities. However, reintroduction of miR-661 led to a decline in ADRA1A expression, thereby attenuating the functional effects of ADRA1A. Circ_0080608 impedes lung cancer progression by regulating the miR-661/ADRA1A pathway. Our findings provide new insights into the progression of lung cancer.


Assuntos
Neoplasias Pulmonares , MicroRNAs , RNA Circular , Receptores Adrenérgicos alfa 1 , Animais , Humanos , Regiões 3' não Traduzidas , Bioensaio , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , Receptores Adrenérgicos alfa 1/metabolismo , RNA Circular/metabolismo
8.
Brain Res ; 1821: 148614, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37783262

RESUMO

The norepinephrine (NE) system is involved in pathways that regulate morphine addiction. Here, we investigated the role of α1 adrenoceptor in the ventrolateral orbital cortex (VLO) of rats with repeated morphine treatment and underlying molecular mechanisms. The rewarding properties of morphine were assessed by the conditioned place preference (CPP) paradigm. Prazosin, an α1 adrenoceptor antagonist, was microinjected into the VLO. The expression of α1 adrenoceptor, p-CaMKII/CaMKII, CRTC1, BDNF and PSD95 in the VLO were determined by immunohistochemistry or western blotting. Neurotransmitter NE in the VLO and inflammatory factors in serum were detected separately through high-performance liquid chromatography and enzyme-linked immunosorbent assay. Our experimental results showed that repeated morphine administration induced stable CPP and prazosin promoted the morphine-induced CPP. Microinjection of prazosin in the VLO not only blocked the activity of α1 adrenoceptor, decreased CaMKII phosphorylation and CRTC1, which eventually resulted in a regression of synaptic plasticity-related proteins, but also was accompanied by significantly decreasing of NE in the VLO and increasing of inflammatory cytokines in peripheral blood. These findings suggested that prazosin potentiates the addictive effects of morphine. The effect of increased CPP through reducing α1 adrenoceptor and NE was associated with the CaMKII-CRTC1 pathway and synaptic plasticity-related proteins in the VLO and inflammatory cytokines in the peripheral blood. The NE system may therefore be an underlying therapeutic target in morphine addiction. Additionally, we believe that the clinical use of prazosin in hypertensive patients with morphine abuse may be a potential risk because of its reinforcing effect on addiction.


Assuntos
Dependência de Morfina , Morfina , Humanos , Ratos , Animais , Morfina/farmacologia , Prazosina/farmacologia , Ratos Sprague-Dawley , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Receptores Adrenérgicos alfa 1/metabolismo , Citocinas
9.
Chin J Dent Res ; 26(3): 163-169, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37732682

RESUMO

OBJECTIVE: To evaluate the saliva level of α1 and ß1 adrenergic receptors (ARs) in oral lichen planus (OLP) patients. METHODS: This case-control study included unstimulated saliva samples from 33 OLP patients (14 erosive, 19 non-erosive) and 33 healthy controls. All participants were evaluated on psychological conditions via the Depression, Anxiety and Stress Scale - 21 items (DASS 21). The saliva levels of α1 and ß1 ARs was measured by enzyme-linked immunosorbent assay (ELISA). Data were analysed with a t test using SPSS 25 (IBM, Armonk, NY, USA). RESULTS: The saliva levels of α1 and ß1 ARs of OLP patients (both erosive and non-erosive forms) were significantly higher than in healthy controls. Stress levels in patients with both forms of OLP were significantly higher than in the healthy group. There was a positive correlation between salivary α1 and ß1 ARs and stress, and this positive correlation was also seen for saliva ß1 ARs between anxiety or depression. The saliva level of α1 ARs was inversely correlated with unstimulated salivary flow rates (r = -0.246; P = 0.046). CONCLUSION: This study indicated that OLP patients with both erosive and non-erosive forms have higher psychological stress and saliva levels of α1 and ß1 ARs than healthy controls; however, the role of α1 and ß1 ARs as salivary markers with regard to the development, severity of symptoms and outcome of OLP needs further investigation.


Assuntos
Líquen Plano Bucal , Humanos , Estudos de Casos e Controles , Saliva , Estresse Psicológico , Receptores Adrenérgicos alfa 1
10.
Nat Commun ; 14(1): 4819, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563160

RESUMO

α1-adrenergic receptors (α1-ARs) play critical roles in the cardiovascular and nervous systems where they regulate blood pressure, cognition, and metabolism. However, the lack of specific agonists for all α1 subtypes has limited our understanding of the physiological roles of different α1-AR subtypes, and led to the stagnancy in agonist-based drug development for these receptors. Here we report cryo-EM structures of α1A-AR in complex with heterotrimeric G-proteins and either the endogenous common agonist epinephrine or the α1A-AR-specific synthetic agonist A61603. These structures provide molecular insights into the mechanisms underlying the discrimination between α1A-AR and α1B-AR by A61603. Guided by the structures and corresponding molecular dynamics simulations, we engineer α1A-AR mutants that are not responsive to A61603, and α1B-AR mutants that can be potently activated by A61603. Together, these findings advance our understanding of the agonist specificity for α1-ARs at the molecular level, opening the possibility of rational design of subtype-specific agonists.


Assuntos
Epinefrina , Receptores Adrenérgicos alfa 1 , Receptores Adrenérgicos alfa 1/metabolismo , Transdução de Sinais
11.
Fundam Clin Pharmacol ; 37(6): 1170-1178, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37392126

RESUMO

BACKGROUND: RS17053 is classed as an α1A -adrenoceptor selective antagonist. OBJECTIVES: We have examined its profile of action at all subtypes of α1 -adrenoceptor. METHODS: Noradrenaline (NA) evoked contractions of rat vas deferens involve α1D -adrenoceptors in phasic contractions and α1A -adrenoceptors in tonic contractions. Contractions of rat aorta to NA involve α1D - and α1B -adrenoceptors. RESULTS: RS17053 (10-5  M) shifted NA potency and virtually abolished tonic contractions to NA, with little or limited effect on phasic contractions. The α1D -adrenoceptor antagonist BMY7378 (3 × 10-7 M) significantly inhibited the remaining phasic component of the contractions, and the α1A -adrenoceptor antagonist RS100329 (10-7  M) inhibited further the residual tonic contraction. Hence, RS17053 shows high selectivity for α1A -adrenoceptors over α1D -adrenoceptors in rat vas deferens. However, RS17053 (10-5  M) produced a large shift in the potency of NA in rat aorta, with a pKB of 6.82. Large shifts of NA potency in rat aorta involve α1B -adrenoceptor blockade. CONCLUSION: Results in rat vas deferens demonstrate low potency of RS17053 at α1D -adrenoceptors, but results from rat aorta can only be explained as demonstrating α1B -adrenoceptor antagonism by RS17053. RS17053 may be a useful pharmacological tool when reclassified as a mainly α1A - and to a lesser extent α1B -adrenoceptor antagonist with little effect at α1D -adrenoceptors.


Assuntos
Prazosina , Ducto Deferente , Masculino , Ratos , Animais , Prazosina/farmacologia , Ducto Deferente/fisiologia , Receptores Adrenérgicos alfa 1/fisiologia , Norepinefrina/farmacologia , Aorta
12.
Biol Pharm Bull ; 46(7): 869-873, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37394637

RESUMO

Adrenergic receptors (ADRs) are widely distributed in the peripheral and central nervous systems. We previously reported that L-3,4-dihydroxyphenylalanine (L-DOPA), the precursor of dopamine, sensitizes adrenergic α1 receptor (ADRA1) through a G protein-coupled receptor GPR143. Chimeric analysis, in which the transmembrane (TM) domains of GPR143 were replaced with those of GPR37, revealed that the second TM region was essential for the potentiation of phenylephrine-induced extracellular signal-regulated kinase (ERK) phosphorylation by GPR143. In HEK293T cells expressing ADRA1B, phenylephrine-induced ERK phosphorylation was augmented by the co-expression of GPR143, compared to the mock vector. Immunoprecipitation analysis revealed that a synthetic transactivator of the transcription peptide fused with TM2 of GPR143 (TAT-TM2) disrupts the interaction between GPR143 and ADRA1B. This TAT-TM2 peptide suppressed the augmentation of phenylephrine-induced ERK phosphorylation by GPR143 in HEK293T cells co-expressing ADRA1B and GPR143. These results indicate that the interaction between GPR143 and ADRA1B is required for the potentiation of ADRA1B-mediated signaling by GPR143. The TM2 region of GPR143 is a crucial dimeric interface for the functional coupling between ADRA1B and GPR143.


Assuntos
Adrenérgicos , Di-Hidroxifenilalanina , Glicoproteínas de Membrana , Receptores Adrenérgicos alfa 1 , Humanos , MAP Quinases Reguladas por Sinal Extracelular , Proteínas do Olho , Células HEK293 , Glicoproteínas de Membrana/metabolismo , Fenilefrina/farmacologia , Receptores Adrenérgicos alfa 1/metabolismo
13.
J Complement Integr Med ; 20(4): 707-713, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37428454

RESUMO

OBJECTIVES: Exercise is assumed to attenuate age-related neuronal apoptosis, but the detailed mechanism(s) is not fully understood. α1-Adrenergic receptors (ARs) can either trigger or suppress apoptosis, therefore, here we determined the impact of treadmill exercise on the expression of the apoptosis regulatory proteins as well as α1-AR subtypes α1A- and α1B-ARs, in order to elucidate a possible association between apoptosis and the hippocampal expression of α1-ARs in aged male rats. METHODS: Twenty-one male Wistar rats were divided into 3 groups (n=7): young control, aged sedentary, and aged + exercise. Western blot for α1A- and α1B-ARs as well as pro-(Bax and p53) and anti-apoptotic (Bcl2) proteins was conducted. An 8-week regular moderate-intensity treadmill exercise intervention was carried out in exercise group. RESULTS: In aged rats, α1A-AR expression in the hippocampus was significantly increased, and exercise markedly prevented this event. While α1B-AR expression was no altered with aging, a marked reduction in α1B-AR level was detected in exercise group when compared to aged group. Furthermore, pro-apoptotic protein levels of Bax and p53 were upregulated and anti-apoptotic protein Bcl2 was downregulated in the aging hippocampus, but could be reversed by treadmill exercise. In the present research, exercise-induced reduction in α1A- and α1B-ARs was associated with an obvious downregulation of Bax/Bcl2 ratio in aged rats, suggesting that exercise may inhibit apoptosis through regulating α1-ARs, particularly α1A-AR. CONCLUSIONS: Our study suggests that manipulations attenuating α1-AR activity, including nonselective α1-adrenergic antagonists, may protect against hippocampal neurodegeneration in aging brains.


Assuntos
Apoptose , Proteína Supressora de Tumor p53 , Ratos , Masculino , Animais , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo , Ratos Wistar , Hipocampo/metabolismo , Receptores Adrenérgicos/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo
14.
Nat Commun ; 14(1): 3655, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37339967

RESUMO

The α1A-adrenergic receptor (α1AAR) belongs to the family of G protein-coupled receptors that respond to adrenaline and noradrenaline. α1AAR is involved in smooth muscle contraction and cognitive function. Here, we present three cryo-electron microscopy structures of human α1AAR bound to the endogenous agonist noradrenaline, its selective agonist oxymetazoline, and the antagonist tamsulosin, with resolutions range from 2.9 Å to 3.5 Å. Our active and inactive α1AAR structures reveal the activation mechanism and distinct ligand binding modes for noradrenaline compared with other adrenergic receptor subtypes. In addition, we identified a nanobody that preferentially binds to the extracellular vestibule of α1AAR when bound to the selective agonist oxymetazoline. These results should facilitate the design of more selective therapeutic drugs targeting both orthosteric and allosteric sites in this receptor family.


Assuntos
Oximetazolina , Receptores Adrenérgicos alfa 1 , Humanos , Microscopia Crioeletrônica , Receptores Adrenérgicos alfa 1/metabolismo , Norepinefrina , Tansulosina
15.
Biochem Pharmacol ; 212: 115571, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37127250

RESUMO

The unsatisfactory rates of adequate blood pressure control among patients receiving antihypertensive treatment calls for new therapeutic strategies to treat hypertension. Several studies have shown that oral sodium nitrite exerts significant antihypertensive effects, but the mechanisms underlying these effects remain unclear. While these mechanisms may involve nitrite-derived S-nitrosothiols, their implication in important alterations associated with hypertension, such as aberrant α1-adrenergic vasoconstriction, has not yet been investigated. Here, we examined the effects of oral nitrite treatment on vascular responses to the α1-adrenergic agonist phenylephrine in two-kidney, one clip (2K1C) hypertensive rats and investigated the potential underlying mechanisms. Our results show that treatment with oral sodium nitrite decreases blood pressure and prevents the increased α1-adrenergic vasoconstriction in 2K1C hypertensive rats. Interestingly, we found that these effects require vascular protein S-nitrosylation, and to investigate the specific S-nitrosylated proteins we performed an unbiased nitrosoproteomic analysis of vascular smooth muscle cells (VSMCs) treated with the nitrosylating compound S-nitrosoglutathione (GSNO). This analysis revealed that GSNO markedly increases the nitrosylation of calcium/calmodulin-dependent protein kinase II γ (CaMKIIγ), a multifunctional protein that mediates the α1-adrenergic receptor signaling. This result was associated with reduced α1-adrenergic receptor-mediated CaMKIIγ activity in VSMCs. We further tested the relevance of these findings in vivo and found that treatment with oral nitrite increases CaMKIIγ S-nitrosylation and blunts the increased CaMKIIγ activity induced by phenylephrine in rat aortas. Collectively, these results are consistent with the idea that oral sodium nitrite treatment increases vascular protein S-nitrosylation, including CaMKIIγ as a target, which may ultimately prevent the increased α1-adrenergic vasoconstriction induced by hypertension. These mechanisms may help to explain the antihypertensive effects of oral nitrite and hold potential implications in the therapy of hypertension and other cardiovascular diseases associated with abnormal α1-adrenergic vasoconstriction.


Assuntos
Hipertensão , Nitrito de Sódio , Ratos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Vasoconstrição , Cálcio , Adrenérgicos/farmacologia , Adrenérgicos/uso terapêutico , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Hipertensão/prevenção & controle , Fenilefrina/farmacologia , Receptores Adrenérgicos/uso terapêutico , Receptores Adrenérgicos alfa 1/metabolismo
16.
J Hypertens ; 41(7): 1201-1214, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37115907

RESUMO

OBJECTIVE: Small arteries from different organs vary with regard to the mechanisms that regulate vasoconstriction. This study investigated the impact of advanced age on the regulation of vasoconstriction in isolated human small arteries from kidney cortex and periintestinal mesenteric tissue. METHODS: Renal and mesenteric tissues were obtained from patients (mean age 71 ±â€Š9 years) undergoing elective surgery. Furthermore, intrarenal and mesenteric arteries from young and aged mice were studied. Arteries were investigated by small vessel myography and western blot. RESULTS: Human intrarenal arteries (h-RA) showed higher stretch-induced tone and higher reactivity to α 1 adrenergic receptor stimulation than human mesenteric arteries (h-MA). Rho-kinase (ROK) inhibition resulted in a greater decrease in Ca 2+ and depolarization-induced tone in h-RA than in h-MA. Basal and α 1 adrenergic receptor stimulation-induced phosphorylation of the regulatory light chain of myosin (MLC 20 ) was higher in h-RA than in h-MA. This was associated with higher ROK-dependent phosphorylation of the regulatory subunit of myosin light-chain-phosphatase (MLCP), MYPT1-T853. In h-RA phosphorylation of ribosomal S6-kinase II (RSK2-S227) was significantly higher than in h-MA. Stretch-induced tone and RSK2 phosphorylation was also higher in interlobar arteries (m-IAs) from aged mice than in respective vessels from young mice and in murine mesenteric arteries (m-MA) from both age groups. CONCLUSION: Vasoconstriction in human intrarenal arteries shows a greater ROK-dependence than in mesenteric arteries. Activation of RSK2 may contribute to intrarenal artery tone dysregulation associated with aging. Compared with h-RA, h-MA undergo age-related remodeling leading to a reduction of the contractile response to α 1 adrenergic stimulation.


Assuntos
Receptores Adrenérgicos alfa 1 , Quinases Associadas a rho , Humanos , Camundongos , Animais , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Quinases Associadas a rho/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Artérias Mesentéricas/metabolismo , Transdução de Sinais , Vasoconstrição , Miosinas/metabolismo , Fosforilação , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo
17.
Int J Mol Sci ; 24(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36982930

RESUMO

In the inflamed uterus, the production and secretion of prostaglandins (PGs) and noradrenergic innervation pattern are changed. Receptor-based control of prostaglandin E2 (PGE2) production and secretion by noradrenaline during uterine inflammation is unknown. The aim of this study was to determine the role of α1-, α2- and ß-adrenoreceptors (ARs) in noradrenaline-influenced PG-endoperoxidase synthase-2 (PTGS-2) and microsomal PTGE synthase-1 (mPTGES-1) protein levels in the inflamed pig endometrium, and in the secretion of PGE2 from this tissue. E. coli suspension (E. coli group) or saline (CON group) was injected into the uterine horns. Eight days later, severe acute endometritis developed in the E. coli group. Endometrial explants were incubated with noradrenaline and/or α1-, α2- and ß-AR antagonists. In the CON group, noradrenaline did not significantly change PTGS-2 and mPTGES-1 protein expression and increased PGE2 secretion compared to the control values (untreated tissue). In the E. coli group, both enzyme expression and PGE2 release were stimulated by noradrenaline, and these values were higher versus the CON group. The antagonists of α1- and α2-AR isoforms and ß-AR subtypes do not significantly alter the noradrenaline effect on PTGS-2 and mPTGES-1 protein levels in the CON group, compared to noradrenaline action alone. In this group, α1A-, α2B- and ß2-AR antagonists partly eliminated noradrenaline-stimulated PGE2 release. Compared to the noradrenaline effect alone, α1A-, α1B-, α2A-, α2B-, ß1-, ß2- and ß3-AR antagonists together with noradrenaline reduced PTGS-2 protein expression in the E. coli group. Such effects were also exerted in this group by α1A-, α1D-, α2A-, ß2- and ß3-AR antagonists with noradrenaline on mPTGES-1 protein levels. In the E. coli group, the antagonists of all isoforms of α1-ARs and subtypes of ß-ARs as well as α2A-ARs together with noradrenaline decreased PGE2 secretion versus noradrenaline action alone. Summarizing, in the inflamed pig endometrium, α1(A, B)-, α2(A, B)- and ß(1, 2, 3)-ARs mediate the noradrenaline stimulatory effect on PTGE-2 protein expression, while noradrenaline via α1(A, D)-, α2A- and ß(2, 3)-ARs increases mPTGES-1 protein expression and α1(A, B, D)-, α2A- and ß(1, 2, 3)-ARs are involved in PGE2 release. Data suggest that noradrenaline may indirectly affect the processes regulated by PGE2 by influencing its production. Pharmacological modulation of particular AR isoforms/subtypes can be used to change PGE2 synthesis/secretion to alleviate inflammation and improve uterine function.


Assuntos
Dinoprostona , Norepinefrina , Feminino , Suínos , Animais , Norepinefrina/farmacologia , Norepinefrina/metabolismo , Escherichia coli/metabolismo , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos alfa 1 , Endométrio/metabolismo
18.
Pharmacol Res ; 190: 106730, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36925091

RESUMO

We reported previously that α1-adrenoceptor (α1-AR) ligands inhibit chemokine receptor (CR) heteromerization partners of α1B/D-AR. The underlying mechanisms are unknown and in vivo evidence for such effects is missing. Utilizing CCR2 and α1B-AR as prototypical partners, we observed in recombinant systems and THP-1 cells that α1B-AR enhanced whereas its absence inhibited Gαi signaling of CCR2. Phenylephrine and phentolamine reduced the CCR2:α1B-AR heteromerization propensity and inhibited Gαi signaling of CCR2. Phenylephrine cross-recruited ß-arrestin-2 to CCR2, and reduced expression of α1B/D-AR, CR partners (CCR1/2, CXCR4) and corresponding heteromers. Phentolamine reduced CR:α1B/D-AR heteromers without affecting ß-arrestin-2 recruitment or receptor expression. Phenylephrine/phentolamine prevented leukocyte infiltration mediated via CR heteromerization partners in a murine air pouch model. Our findings document that α1-AR ligands inhibit leukocyte migration mediated by CR heteromerization partners in vivo and suggest interference with α1B-AR:CR heteromerization as a mechanism by which CR partners are inhibited. These findings provide new insights into the pharmacology of GPCR heteromers and indicate that an agonist and antagonist at one GPCR can act as antagonists at heteromerization partners of their target receptors.


Assuntos
Receptores Adrenérgicos alfa 1 , Receptores Adrenérgicos , Camundongos , Animais , Ligantes , Fentolamina , Fenilefrina/farmacologia , beta-Arrestina 2/metabolismo , Receptores Adrenérgicos/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo
19.
J Biol Chem ; 299(3): 102964, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36736425

RESUMO

Cardiac hypertrophy is a crucial risk factor for hypertensive disorders during pregnancy, but its progression during pregnancy remains unclear. We previously showed cardiac hypertrophy in a pregnancy-associated hypertensive (PAH) mouse model, in which an increase in angiotensin II (Ang II) levels was induced by human renin and human angiotensinogen, depending on pregnancy conditions. Here, to elucidate the factors involved in the progression of cardiac hypertrophy, we performed a comprehensive analysis of changes in gene expression in the hearts of PAH mice and compared them with those in control mice. We found that alpha-1A adrenergic receptor (Adra1a) mRNA levels in the heart were significantly reduced under PAH conditions, whereas the renin-angiotensin system was upregulated. Furthermore, we found that Adra1a-deficient PAH mice exhibited more severe cardiac hypertrophy than PAH mice. Our study suggests that Adra1a levels are regulated by renin-angiotensin system and that changes in Adra1a expression are involved in progressive cardiac hypertrophy in PAH mice.


Assuntos
Angiotensina II , Hipertensão Induzida pela Gravidez , Receptores Adrenérgicos alfa 1 , Animais , Feminino , Humanos , Camundongos , Gravidez , Angiotensina II/metabolismo , Cardiomegalia/metabolismo , Miocárdio/metabolismo , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos alfa 1/metabolismo , Sistema Renina-Angiotensina , Hipertensão Induzida pela Gravidez/genética , Hipertensão Induzida pela Gravidez/metabolismo
20.
PLoS One ; 18(2): e0280152, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36800373

RESUMO

BACKGROUND: Disturbances in uterine contractility often lead to the origin, development and maintenance of endometritis and metritis, which are a very common and serious pathologies in domestic animals. Here we aimed to investigate the role of α1A-, α1B- and α1D-adrenoreceptors (ARs) in noradrenaline (NA)-induced contractility of inflammatory-changed porcine uterus. METHODS: On Day 3 of the estrous cycle, either Escherichia coli (E. coli) suspension (E. coli group) or saline (SAL group) was injected into uterine horns, or only laparotomy was performed (CON group). Eight days later, infected gilts developed severe acute endometritis. RESULTS: Compared to the period before NA application, NA reduced the contractile amplitude and frequency in myometrium (MYO) and endometrium (ENDO)/MYO strips from the CON, SAL and E. coli groups. In the last group, the amplitude in MYO and the frequency in ENDO/MYO were lowered versus other groups. After using α1A-ARs antagonist with NA, a greater decrease or occurrence of a drop in the amplitude and frequency in all groups (ENDO/MYO) were found compared to this neurotransmitter action alone. Such results were noted for NA action on the frequency after α1B-ARs blocking in the CON (both kinds of strips) and SAL (ENDO/MYO) groups. In response to α1D-ARs antagonist with NA, a greater decrease or occurrence of a drop in the amplitude was noted in the CON (both kinds of strips) and SAL and E. coli (MYO) groups. Use of these factors caused the similar changes in the frequency in CON and E. coli (MYO) and SAL (ENDO/MYO) groups. In response to NA, α1A,B,D-ARs antagonist led to a greater reduction or appearance of a drop in the amplitude in the CON and SAL (ENDO/MYO) and E. coli (both kinds of strips) as well as in the frequency in the CON and SAL (ENDO/MYO) and E. coli (MYO) groups. CONCLUSIONS: In conclusion, activation of α1A- and α1D-ARs by NA promotes the contractile amplitude and frequency in the inflamed pig uterus; pharmacological modulation of these receptors can be utilized to enhance systolic activity of myometrium.


Assuntos
Endometrite , Suínos , Animais , Feminino , Humanos , Escherichia coli , Norepinefrina/farmacologia , Útero , Sus scrofa/fisiologia , Receptores Adrenérgicos alfa 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...